M
T UT————— y ; ;
: § ¢ H
H H £
H H
TR ApT— A ; 2 e R S S S AR st - = §
; H H
i ; 3
z H 3 H
H H i g
! ;
So— ;
|
3 H
3
. 1 H
2
H
H
2
—- 3 ;
4 $
. e L i
H g
i ,
H
W
DAV S——— -
i
NPT « ER—
3
H
x 3 i N S A
r—— : - — P S— .. Fp— i
S e 5 S i A A S G St " S o
E z
I [i
m ; i a0 ki
cinassARsd NP UUPR. S——. S - - . vt

Acknowledgements

The Apple III Pascal system is based on UCSD Pascal. '"UCSD PASCAL" is
a trademark of the Regents of the University of California. Use
thereof in conjunction with any goods or services is authorized by
specific license only and is an indication that the associated product
or service has met quality assurance standards prescribed by the

University. Any unauthorized use thereof is contrary to the laws of
the State of California.

iii

Introduction to Apple
Pascal Version 1.1 1

2 How to Use This Manual
5 How to Use Pascal 1.1 on Your Apple III

Using the Extended Libraries 9

10 An Overview of Pascal Libraries

15 Making a Library Name File

16 Using Library Files in the Library Name File
21 How the System Searches Libraries

Using the Pascal System Prefix at
Execution Time 23

24 Setting the Prefix From Your Program

25 Getting the Value of the Current Prefix

25 Getting the Pathname of the Program
Currently Executing

Using the Executing Program
Pathname 27

29 Using the Percent Character in a Library Name File
30 Accessing Files During Program Execution
31 Chaining to Other Programs During Execution

iv Contents

¢

Arranging Files on Disk:
9 a Sample Application 33

34 Preliminaries: a Significant Development Stage
35 Arranging the Intrinsic Units Your
Application Requires
37 Preparing the Final Runtime Disk
38 Copying Your Code Files and Library Files to the
Runtime Disk
40 Some Final Details to Consider

Using the ASCIl/Binary
6 Floating-Point Conversions 43

44 The ASCII to Binary Floating-Point Conversion
45 The Binary Floating-Point to ASCII Conversion

4 Listing a Program at Compile Time 47

Making a Rigid Disk
8 Your System Disk 49

50 Using PMOVE
52 Comparing Versions of SYSTEM.LIBRARY
and SOS.DRIVER Files

9 Other Features of Pascal 1.1 53

54 A Change to the Editor

54 The Screen Display in Program Chaining
54 AIIFORMAT Has a New Look

55 A New System Level Command

55 A Modification of the Compiler

. ORI D s
o —
i 3

N pa————

- , - TS
SR T i
S : i H
{ £ § ‘
i i H : E H
; : ; i ;
: § : H i
:] H
i H i £
H H i ¥ i i
: : : :
i ¢ H ki
U ———— b YA R .
b i
: B H i
H 3] ¥
i i :
5
: H
%
H
H i &
H 14 i
,» ; : :
H H $; H
i S 4 R A MW W S NI S S
H 3
H § :
: §
¥ k3

1

Introduction to Apple Pascal
Version 1.1

This chapter explains the software changes that came with your Version
1.1 of Pascal. It tells you what to do with your Pascal 1. system
files and points out alternate ways of arranging your system program
files on disk.

Occasionally in this manual you will see an indented paragraph preceded
by one of these symbols:

This means the indented paragraph contains information that will

give you a helping hand.

This tells you to be alert. The indented paragraph describes a

special or unusual aspect of Apple III Pascal.

How to Use This Manual

The document you are reading is an update of the four Apple III Pascal
manuals packaged with your Pascal system software disks. The changes
described in this update are additions made to the Pascal system since
the production of Version l1.f. In general, the execution of your
program files made with Pascal 1.f will not be affected by the upgrade
of your system files to Pascal l.1. You may enhance your old program
files by revising them to incorporate some of the new features of
Apple III Pascal presented in the following chapters.

Two types of changes have been made:
~ features of interest to all users of Apple III Pascal, and

- features of special interest to programmers who write
application programs using numerous interrelated files.

The topics of general interest can be found mainly in Chapters 7, 8,
and 9 of this manual. Those of special interest to application

How to Use This Manual : 3

"Using the Extended Libraries." Scan Table 1-1 to find out what topics
might be related to your own needs and then study the appropriate
sections. Chapter 5 contains no new features of Pascal 1.1, but
illustrates the use of many of the new features by means of a sample,
complex application.

You may want to go back to the pages in the original Apple III Pascal
manual where a particular topic was introduced. For example, if you
are not currently knowledgeable about the Pascal system prefix, you may
want to review the pages discussing the prefix in the Apple III Pascal
Introduction, Filer, and Editor manual. At the same time, you should
study the chapter in this manual on new ways of handling the system
prefix and program pathnames.

4 Introduction to Apple Pascal Version 1.1 Chapter 1

€

New or Chapter
Improved Feature Advantage to Your Program Development Reference
AITFORMAT Simplifies creating Apple II Pascal disks 9

for the Apple II or the Apple III.

CHAINING PROGRAMS Retains console display mode and contents 9

during the chain between programs.

CHAINSTUFF PROCEDURES 3
SET_PREFIX Sets Pascal file name prefix from your program.
GET_PREFIX Returns current prefix value to your program.
GET_PATHNAME Returns pathname of program currently executing.

COMPILE-LISTING Allows you to specify listing file name when 7

FILE REQUEST starting up the compiler.
COMPILER MODIFICATION Compiler and linker now support 254 procedures 9
--also larger ones--in a single compiled unit.
EDITOR EXTENSION Displays control characters on screen. 9
EXTENDED LIBRARY Allows up to five runtime program libraries. 2
FACILITY Allows several programs to share library files.

Eliminates dependency on SYSTEM.LIBRARY for
runtime programs.

EXTENSION TO THE Specifies the directory or subdirectory that 4
FILE NAME SYNTAX contains the currently executing program.

FLOATING-POINT I/0 Converts ASCII strings to binary floating- 6
CONVERSIONS point and vice versa.

LARGE DISK SUPPORT Uses PMOVE, a program to configure your large 8

disk so that it functions as the Pascal
system disk.

QUITTING THE A new command lets you quit the Pascal system 9
PASCAL SYSTEM to boot another system or application.

Table 1-1. Improvements Available With Apple III Pascal, Version 1.1

How to Use Pascal 1.1 on Your Apple III 5
[

How to Use Pascal 1.1 on Your Apple Il

This section introduces you to the new Pascal: the hardware and
software system requirements, definitions of startup disk and system
disk, and steps for converting your system to the new version.

Checking Your System Requirements:
Hardware and Software

Pascal 1.1 will run on an Apple III computer with at least 128K bytes
of internal memory and one external disk drive in addition to the
built-in drive. The external disk drive can be a rigid-disk device,
such as the Apple ProFile. See your Apple III Standard Device Drivers
Manual and the instructions that came with your particular disk drive.

Your Pascal 1.1 software package includes four disks: three contain
the Pascal system files, and one is an unformatted (blank) disk to use
for developing programs or storing files. The arrangement of the
system files on the three new disks is identical to the arrangement on
the three disks of Version 1./, with these exceptions: the PMOVE.CODE
file is new with Pascal 1.1, and the SOS.DRIVER and SYSTEM.LIBRARY
files on the PASCAL3 disk are expanded versions of their counterparts
on the PASCALl disk. Chapter 8 shows their differences. Table 1-2
shows the way your files are arranged on the new disks. Of course the
order of files on each disk doesn't matter.

PASCAL1 (boot and PASCAL2 (text and language PASCAL3 (Pascal
system disk) processing disk) utilities disk)
SOS .KERNEL SYSTEM.EDITOR : LIBMAP.CODE
SOS.DRIVER SYSTEM.SYNTAX LIBRARY.CODE
SOS.INTERP SYSTEM.COMPILER SETUP.CODE
SYSTEM.PASCAL SYSTEM.ASSMBLER AIIFORMAT.CODE
SYSTEM.MISCINFO OPCODES.6502 SOS.DRIVER
SYSTEM.LIBRARY ERRORS.6502 SYSTEM.LIBRARY
SYSTEM.FILER SYSTEM.LINKER PMOVE .CODE

Table 1-2. The Arrangement of Pascal 1.1 System Files As Shipped

Throughout this manual you will see the terms boot disk and system
disk. A boot or startup disk is a disk containing the software
programs necessary to start up your Apple IIL. 1t must contain at
least these three files, in any order:

SOS .KERNEL (the Apple I1I operating system)
SOS.DRIVER (the drivers that communicate with your devices)
SOS.INTERP (the Pascal interpreter)

6 Introduction to Apple Pascal Version 1.1 Chapter 1

¢

A startup disk must be in the built-in drive when you turn the power on
or press CONTROL-RESET.

A system disk is a disk containing the software necessary to operate a
particular language system, such as Apple III Pascal l.1, or an
application. A Pascal system disk must contain at least these two
files:

SYSTEM.PASCAL (the Pascal operating system)
SYSTEM.MISCINFO (the Pascal configuration information)

To complete the process of bringing up the Pascal system or a
Pascal-based application, you must be sure that the system disk is in
the system drive (unit #4), whether you are using a flexible or
rigid-disk device for file storage. Of course your system disk may
also include a SYSTEM.LIBRARY file and a SYSTEM.STARTUP file, along
with others from Pascal 1.1, if you need them for program development
or for a runtime application.

The startup disk files and the system disk files may be combined on one
disk. This is the case with the PASCAL1l disk shipped to you and shown
in Table 1-2. For the development or running of any application, you
have the option of combining the necessary startup and system files or,
in cases where it is more convenient, of starting up in separate
stages, with the startup and system files on separate disks.

Although the typical Pascal system uses the Apple III built-in drive
for the system disk drive (unit #4), in Chapter 8 you will learn how to
use PMOVE to designate any disk drive as the system disk device
(including ProFile or any other rigid-disk drive), keeping the built-in
drive as the startup drive.

Upgrading Your Apple Il Pascal System Software

To upgrade your Pascal system to Version 1.1, follow these three steps:
1. Capy the New Disks

Be sure to make a copy of each of the three new Pascal 1.1
disks (PASCAL1l, PASCAL2, and PASCAL3) and to store the
originals as backups. To do this, use the Pascal Filer or the
Copy Volume command on your System Utilities disk, as described
in your Apple III Owner's Guide.

2. Next, take any Apple III Pascal 1. originals, with their
copies, out of your disk file box and replace them (originals
and copies) with the new Pascal 1.1 disks.

<"®>) DO NOT USE ANY OF THE SYSTEM FTLLES FROM THE OT.D VERSTON.

How to Use Pascal 1.1 on Your Apple III 7

¢

Because almost all of the files have been modified in the new
version, the old ones no longer serve a useful purpose.
Discarding or storing the old version will prevent hazardous
mixups in the future. The new files support the same program
tools that were available under the old version, including all
the necessary SO0S, Pascal, Library, and program development
files like the Compiler, Linker, and Assembler.

Version 1.0 Version 1.1

PASCAL. 1

©

Figure 1-1. Replacing Your 0ld System Files

The SOS.DRIVER file is the only one you might want to save from
your old PASCAL1 disk--or whatever you have been using for your
Pascal startup disk. Because the old SOS.DRIVER file stores
the startup configuration you already tailored for your
particular system, you can save yourself the trouble of
reconfiguring the system by transferring your old SOS.DRIVER
file to your new copy (your copy, not the original) of the
Pascal startup disk, using the Filer or the Copy File command
on your System Utilities disk. As you do this, the copy
program will ask you if you want to delete the SOS.DRIVER file
already on the new disk. After making sure that you are
copying the correct SOS.DRIVER file from your old startup disk,
type Y for "Yes."

There are two versions of the SOS.DRIVER file on your Pascal
disks, one on the PASCALl disk and one on the PASCAL3 disk. Do
not remove the expanded version on PASCAL3, because it contains

Introduction to Apple Pascal Version 1.1 Chapter 1

(4

Apple's rigid-disk device called ProFile and four format
drivers for the SOS Utility Filer.

You might want to configure the SOS.DRIVER on your new PASCAL3
disk rather than salvage your old one. In this case, follow the
instructions in your Apple III Owner's Guide. Note the warning
there to build, store, and test a new configuration on a backup
startup disk, to make sure it works correctly before placing it
on the startup disk you use regularly.

As soon as your SOS.DRIVER is working correctly, store your old
Pascal 1.p disks and their copies.

Revise your program libraries. The program libraries in
applications you developed using Version 1.0 may have to be
revised. In Pascal 1.1 certain units in
SYSTEM.LIBRARY--namely, PASCALIO, CHAINSTUFF, REALMODES, and
TRANSCEND--have been modified. To use the improved units you
will have to update your program libraries to contain the new
versions.

S S—-

¥

S

10

2
Using the Extended Libraries

This chapter explains the nature and advantages of the extended library
file options available under Pascal 1.1 and illustrates the
implementation of library files using the Library Name File, including
how programs may share the same library files. At the end, to help you
choose your approach to library files as you develop an application,
you'll find the sequence of steps followed by the system as it searches
library files for the intrinsic units required by a program at
execution time.

An Overview of Pascal Libraries

While maintaining the library file system available under Pascal 1.0,
Pascal 1.1 has increased the number and manageability of library files
that you might use for an application.

Important Definitions

In the following discussion, you'll encounter the phrase "in the same
directory as." This phrase means that a file must have the same
directory pathname as another. Likewise, the phrase "in a different
directory than'" means that the directory pathnames are different.
These definitions apply whether a pathname consists simply of a root
directory name and a local file name or whether it consists of a root
directory name, one or more subdirectory names, and a local file name.
Where there is no subdirectory, the volume root directory name and the
directory pathname are the same. Where there is one subdirectory (as
in the illustration below), or more than one, the directory pathname
includes the root directory and the one or more subdirectories:

Root Directory Name Subdirectory Name(s) File Name

An Overview of Pascal Libraries 11

[

In this set of files:

/PROFILE {volume root directory name}
/SHRLIB {subdirectory name}
LIB1.LIB {a library file}
LIB2.LIB {a library file}

the directory pathname for the two library files is the same:

/PROFILE/SHRLIB/LIBLl.LIB
/PROFILE/SHRLIB/LIB2.LIB

|<--directory-->|
pathname

In the case of more than one subdirectory, such as in this set of
files:

/PROFILE {volume root directory name}
/PROGRAM {subdirectory name}
PROG1.CODE - {main program code file name}
PROG1.LIB {Library Name File}
LIB1.LIB {a library file}
LIB2.LIB {a library file}
/LIBRARY {subdirectory name}
MYLIB.LIB {a library file}
SYSTEM.LIB {a library file}

the directory pathname for MYLIB.LIB and for SYSTEM.LIB is the same:

/PROFILE/LIBRARY/MYLIB.LIB
/PROFILE/LIBRARY/SYSTEM.LIB

|<--directory pathname->|
But the directory pathname for LIBl.LIB is different:
/PROFILE/PROGRAM/LIBLl.LIB

| <~=directory-->|
pathname

And so we say that SYSTEM.LIB is in the same directory as MYLIB.LIB.
Likewise, we say that MYLIB.LIB is in a different directory than
LIB1.LIB or LIB2.LIB.

An understanding of Pascal libraries depends on a clear conception of a
few other basic terms used frequently in this discussion: application,
executable code file, main program, intrinsic unit, and library file.

An application is an executable code file and any associated library

12 Using the Extended Libraries Chapter 2

¢

both) have been linked and any required intrinsic units are available
in the appropriate library files. An executable code file or a Pascal
library file may be composed of different combinations of compiled and
assembled source programs.

A Pascal source program called the main program, or sometimes the host
program, is the core of the application. The main program is the code
that lies at the program level in the Pascal source, as shown in this
example:

PROGRAM foo;
{main program declarations}

BEGIN
{main program code}
END.

With Apple III Pascal a main program may use additional code that lies
outside its own source. This required code may be in one or more of
these sources:

- one or more external assembler routines;

- a set of regular units that must be linked to the main program
during program development;

- a set of intrinsic units that are dynamically connected to the
main program by the system at execution time.

In this chapter, we refer mostly to intrinsic units, occasionally to
regular units. Regular units, by definition, have to be linked with
and thereby inserted in the main program code file prior to program
execution. Intrinsic units, on the other hand, are connected by the
system to the main program at program execution time. Intrinsic units
have two characteristics that are relevant to this discussion: first,
they are not restricted to use by only one executable program, and
second, they must be placed in a library accessible to the system at
program execution time in order to be linked to the main program.

Units of either type, regular or intrinsic, are stored in library
files. A library file is a code file that is not directly executed.
Instead, a library file contains one or more compiled units used by one
or more programs. A USES declaration in the program names the required
unit, which is connected by the system at program execution time.
Another section of this chapter will explain how the system searches
various library files for the intrinsic units required by a particular
program.

Two or more library files can be combined into one, using a new name or
one of the old ones, and units can be moved from one library to
another. You may also move units in and out of a copy of the
SYSTEM.LIBRARY file that was shipped with your Pascal system. (How to

An Overview of Pascal Libraries 13

(3

program, is explained in the Apple III Pascal Program Preparation Tools
manual.) The name you give a library file depends on the kind of
library file you are using and its purpose. 1In general, the suffix
.LIB is used to complete the file name.

Comparing Libraries Under the Two Versions of
Pascal

Note the differences between the library file system supported by
Pascal 1.f§ and that supported by Pascal 1l.1l. For storing units, Pascal
1.0 allowed only two library files for each executable program: a
Program Library File and SYSTEM.LIBRARY. Pascal 1.1 supports these two
types and others.

A Program Library File is a library file that is in the same directory
as the main program code file and is given the same name as the main
program code file except that its suffix is .LIB rather than .CODE.
For example, if a main program code file has this directory pathname
and file name,

/ORT/F00.CODE
then the corresponding Program Library File will have this designation:
/ORT/F00.LIB

A Program Library File, like any other library file, may hold between
one and sixteen units.

SYSTEM.LIBRARY is a library file that must reside on the system disk in
order to be used. It may contain units supplied by Apple Computer,
[nc.~-the unit called APPLESTUFF, for example--and, if you so choose,
additional units that you yourself place in SYSTEM.LIBRARY using the
LIBRARY utility program.

The Program Library File and SYSTEM.LIBRARY can both be used by a main
program.

In contrast to Pascal 1.0, Version 1.1 allows up to six library files
(including SYSTEM.LIBRARY) with each main program and also allows
multiple programs to share library files. This extension of Pascal
libraries is made possible by means of new kind of file, called a
Library Name File.

A Library Name File is an Ascii file that you create using the Pascal
Editor. 1In this file, you list the pathnames of up to five library
files that contain intrinsic units you want to be used by a main
program. As long as its pathname is correctly given, a library file
listed in a Library Name File can be in any directory or subdirectory
>n line at the start of program execution. The Library Name File uses

14 Using the Extended Libraries Chapter 2

¢

the same naming convention as a Program Library File: you give it the
name of the main program, using .LIB as the suffix. (The specific
format for a Library Name File is described in the next section of this
chapter.)

Note that if you decide to use a Library Name File, you cannot
then use a Program Library File.

By listing library file pathnames in a Library Name File, you direct
the system at the start of execution time to search the files with
these pathnames to find and link any needed intrinsic units to the main
program. Later in this chapter, you'll see how library files in the
same directory as the main program or in another directory can be
listed in a Library Name File and how they can be shared by multiple
application programs.

To be sure, you can use a Program Library File, with or without
SYSTEM.LIBRARY, under Pascal 1.1 as well as under Pascal 1.0. For a
small application, one requiring only a few units, you'll find that a
Program Library File will take care of your library file needs. For a
larger and more complex application, one using a very large number of
code units, you should use instead a Library Name File. Using a
Program Library File limits you to units residing in the same directory
as the executing program. SYSTEM.LIBRARY also has a limited utility
for large applications: it must reside on the system disk, where it
takes up valuable space. Furthermore, because you may use a different
SYSTEM.LIBRARY in different applications, you face the potential
conflict of library units having the same name.

These are the advantages of using Library Name Files for your
application programs:

- Up to six library files (including SYSTEM.LIBRARY) can be made
available to an executable program. As before, each library
file can hold up to sixteen units.

- A library file can be shared by two or more executable programs
by listing it in a Library Name File for each one of the
executable programs.

- Disk space can be conserved by having only one copy of the same
intrinsic unit shared between programs.

Figure 2-1 compares the kinds of library options available in Pascal
1.0 with those in Pascal l.1.

An Overview of Pascal Libraries

15

Version 1.0

Version 1.1

Limit: one per program
Same directory as program
o Takes name of program

o Cannot be shared

SYSTEM.LIBRARY
Must be on system disk

Allows up to two libraries per program: | Allows up to six libraries per program:

PROGRAM LIBRARY FILE 3 PROGRAM LIBRARY FILE

Limit: one per program
Same directory as program
Takes name of program
Cannot be shared

OR REPLACE PLF WITH A:::]
LIBRARY NAME FILE

Lists pathnames of up to 5
library files

Limit: one per program

Same directory as program -

Takes name of program

Facilitates library file sharing

LIBRARY FILES

Up to 5 can be used in one program
Takes any name except that of

program, .LIB or .CODE extension
Can be shared between programs

SYSTEM.LIBRARY

Must be on system disk

Figure 2-1. Pascal Library Options: 0ld and New

For information on arranging regular and intrinsic units in libraries,
see Chapter 14 in the Apple III Pascal Programmer's Manual, Volume 1.

The Apple III Pascal Technical Reference Manual contains useful

1nformat10n on code file formats.

Making a Library Name File

A Library Name File is an Ascii file that must conform to a specific

text format.

To make a Library Name File, begin a new file in the Pascal Editor,
then type S and then E to bring up on the screen the Set Environment
option. Now select the Ascii file option and set it to True by typing
A and then T. Exit the Set Environment option by pressing CONTROL-C.
Without 1eav1ng the Editor, type I to select the Insert option, and
make a file using the following format (the general format is on the

left; an example file is on the right):

16 Using the Extended Libraries Chapter 2

¢

LIBRARY FILES:[RETURN] LIBRARY FILES:

<{pathname> [RETURN] /SPLAT/APP1/LIB1.LIB
. /SPLAT/APP1/LIB2.LIB
. /SPLAT/APP1/LIB3.CODE
5 $$

<{pathname) [RETURN]

S[RETURN]

[CONTROL-C]

Notes:

1. The "L" in "LIBRARY" must be the first character on the first
line in the file. You cannot have any blank lines, spaces, or
other characters at the top of the file or between lines. The
string "LIBRARY FILES:" may be uppercase or lowercase
characters. Press the RETURN key after each line, as shown.

2, On separate lines, type the pathname followed by RETURN for
each file you want to designate as a library file. A pathname
can be any legal pathname, up to 80 characters long. You can
have up to five pathnames in your file. The system will ignore
any pathnames listed after the fifth one.

3. Two dollar signs ($$) make up the last line of the file no
matter how many pathnames you use.

4, Press CONTROL-C to leave Insert mode.

After you've made your Library Name File and checked the format
carefully, you can type Q, then W, to Write it from the Editor to your
program disk, giving it the name of the main program code file but with
the .LIB suffix. The following paragraphs tell you in more detail how
to select and arrange library files, including those to be shared by
using the Library Name Files.

Using Library Files in the Library Name File

This section gives several examples of how to use library files with
the Library Name File.

Using One Library File With Two Programs

Suppose you had written two applications, called FOO and GORN, and had
stored them in two different directories. Each needs to have a set of
intrinsic units on line when being executed. Right now the intrinsics

are stored in the library file named BAZ.LIB in the same directory as
GORN:

Using Library Files in the Library Name File 17

¢

/APP {a directory}
GORN.CODE {an executable program}
BAZ.LIB {a library file}

Of course, if you wanted either one of the two programs to use the
intrinsic units contained in BAZ.LIB, you would have to list the
pathname of BAZ.LIB in a Library Name File in the relevant directory,
as here: :

/APP {a directory}
GORN.CODE {an executable program}
BAZ.LIB {a library file}
GORN.LIB {a Library Name File LIBRARY FILES:
/APP/BAZ.LIB
$$ }

Notice, however, that for both programs to share the same library
file--in this case BAZ.LIB--you don't need to place BAZ.LIB in both
directories. Instead, you leave the file in the directory /APP and
list its pathname in a Library Name File in the other directory, /ORT:

/ORT {a directory}
F00.CODE {an executable program}
FOO.LIB {a Library Name File LIBRARY FILES:
/APP/BAZ.LIB
$$ }

Now BAZ.LIB is a shared library file, its intrinsics usable by both
programs even though it resides in only one of the two directories.

Using Several Library Files With One Program
If you have a number of library files in the same directory as the
executing program, where, for example, the program BAZ.CODE has the
pathname

/SPLAT/APP1/BAZ.CODE
your library files would be placed in the directory

/SPLAT/APP1

and your Library Name File (with the pathname /SPLAT/APP1/BAZ.LIB)
sould contain

18 Using the Extended Libraries Chapter 2
¢

LIBRARY FILES:
/SPLAT/APP1/LIB1.LIB
/SPLAT/APP1/LIB2.LIB
/SPLAT/APP1/LIB3.CODE
$$

(LIBl1.LIB, LIB2.LIB, and LIB3.CODE are sample names for library files.
You may use any name for a file containing library units, as we did for
LIB3.CODE, although using .LIB makes it easier to remember that it is a
library of units.)

However, if, using the Filer, you set the system prefix to the
directory pathname (/SPLAT/APPl) before executing BAZ.CODE, you could
write the Library Name File more simply, like this:

LIBRARY FILES:
LIB1.LIB
LIB2.LIB
LIB3.LIB

$$

The system attaches the prefix to a library file name before opening
that file. :

When you create shared libraries using Library Name Files, you should
be sure that the pathnames for the files to be shared will be correct
at execution time. If your executable programs are in different
directories or the library files are in different directories, you may
need to change the system prefix prior to the execution of each program
if you plan to use the prefix in conjunction with the pathnames listed
in the Library Name File. For information on a new way to manipulate

. pathnames during actual program execution, see Chapters 4 and 5.

Using Three Subdirectories

Illustrating the positioning of library files in subdirectories, the
following example shows two main programs (PROGl and PROG2) of an
application, each in its own subdirectory, which share some library
files but also have library files unique to each program.

Using Library Files in the Library Name File 19
¢

Here is Program #1:

/PROFILE
/APPSUB1
PROG1.CODE
UNIT1.LIB
UNIT2.LIB
PROG1.LIB

Here is Program #2:

/PROFILE
/APPSUB2
PROG2.CODE
UNIT3.LIB
PROGZ.LIB

{volume root directory name}

{subdirectory name}

{an executable program}

{a-library file--not shared between programs}
{a library file--not shared between programs}
{a Library Name File with the following text:

LIBRARY FILES:
APPSUB1/UNIT1.LIB
APPSUB1/UNIT2.LIB
SHRLIB/LIB1.LIB
SHRLIB/LIB2.LIB

$$ }

{volume root directory name}

{subdirectory name}

{another executable program}

{a library file--not shared between programs}
{a Library Name File with the following text:

LIBRARY FILES:
APPSUB2/UNIT3.LIB
SHRLIB/LIB1.LIB
SHRLIB/LIB2.LIB

$$ }

Finally, here is a subdirectory containing two required library files:

/PROFILE
/SHRLIB
LIB1.LIB
LIB2.LIB

{volume root directory name}
{subdirectory name}

{a shared library file}

{a shared library file}

Before executing either of the two main programs, you must set the

system prefix to /PROFILE.

is each program is executed, the system finds and opens the two library
files that are shared, as well as any other specified library files,
ind uses the intrinsic units stored there. Figure 2-2 illustrates the
celationships of the files in the three subdirectories.

20

Using the Extended Libraries

¢

Chapter 2

Program PROGI Program PROG2
APPSUB1/ {subdirectory} APPSUB2/ {subdirectory}
PROG1.CODE {main program} PROG2,CODE {main program}
UNIT1.LIB {library file} UNIT3.LIB {library file}
UNIT2.LIB {library file}
PROG2.LIB {Library Name File}
PROG1.LIB {Library Name File}
LIBRARY FILES:
LIBRARY FILES: APPSUB2/UNIT3.LIB
APPSUB1/UNIT1.LIB SHRLIB/LIB1.LIB
APPSUB1/UNIT2.LIB SHRLIB/LIB2.LIB
SHRLIB/LIB1.LIB $$
SHRLIB/LIB2,.LIB
$$
e \\}I o
Three Subdirectories
All on Line

Other Library Files

SHRLIB/ {subdirectory}

LIB1.LIB
LIB2.LIB

{library file}
{library file}

Figure 2-2. Designating Shared Libraries

Note that the library files LIBl.LIB and LIB2.LIB, located in the third
subdirectory, are shared by both programs but that UNIT1.LIB,
UNIT2.LIB, and UNIT3.LIB are not shared because their pathnames are not
listed in the Library Name File of the other program. Had the pathname
APPSUB2/UNIT3.LIB been listed in the Library Name File PROGl.LIB, then
APPSUB2/UNIT3.LIB would also have become a shared library, usable as
well by PROGl even though the file is physically located in the
subdirectory of PROG2.

There are many possible arraungements for program library files, using
different combinations of files, directories, and programs. The
examples above are simply suggestions and hints to help you get started
in developing your own shared libraries. As you can see, you'll want
to give considerable thought to the overall structure of your
application: the kind of library files appropriate to each program,
which files to designate as shared libraries, and the best arraangement
on disk of all the files for a particular application program. For an
introduction to how to structure an application on disk, see Chapter 5.
The next section of this chapter gives a brief description of how
libraries are searched for the intrinsic code units required by the
executing program.

How the System Searches Libraries 21

¢

How the System Searches Libraries

The following step-by-step description will help you choose the library
file approach best suited to the particular application you are
developing.

When a program is executed, the system first examines it to determine
whether or not it uses any intrinsic units. If it does not, the
program is loaded and run. If it does, the system searches the
different types of library files, in the following order, to find the
required units:

1. Program Library File (if the program uses one)

2. Library Name File (if there is no Program Library File)

3. Library files whose pathnames are listed in a Library Name File
4. SYSTEM.LIBRARY (if it is on the system disk)

The system first looks for a file of the same name as the executing
program but with the suffix changed from .CODE to .LIB. Then it tries
to open the file corresponding to its new name (PROGNAME.L1IB). 1If the
file exists, the system determines whether it is a code file or an
Ascii file. 1If it finds a code file (the file we call a Program
Library File), the system looks in the file for the required intrinsic
units. If it finds instead an Ascii file (the file we call a Library
Name File), the system collects the pathnames of the library files
listed there and then looks in those files for the required intrinsics.

If you have set a prefix and if the names of the files listed in the
Library Name File require a prefix, the system attaches the prefix
before searching for the files. (See Chapter 4 for a new extension to
pathnames that makes program prefixes available at execution time.)

1f there are intrinsics needed that have not been found in a Program
Library File or by means of a Library Name File, or if you have not
used either of these libraries at all, the system looks in
SYSTEM.LIBRARY. If the missing intrinsics are not found in
SYSTEM.LIBRARY or if SYSTEM.LIBRARY is not on the system disk, an error
message appears on the screen and the system returns control to the
Command line.

The system searches for the intrinsic units until it finds them or
until it runs out of library files and gives an error message. If it
finds the intrinsics before it has looked in all the relevant library
files, it stops searching and begins executing the program.

s

H

oo

H

23

24

Using the Pascal System Prefix at
Execution Time

Three new procedures have been added to the CHAINSTUFF unit to give an
executing program these capabilities:

- to set or reset the current Pascal system prefix;
- to get the current Pascal system prefix value;
- to get or find out its own pathname.
Setting or getting the prefix this way is equivalent to setting or

getting the prefix by using the Filer, except that now you can do any
of these procedures from your program while it is executing.

Note that references here are to the Pascal system prefix, not to

the SOS prefix.

In order to use one of these procedures, your program must use the
intrinsic unit CHAINSTUFF, available in SYSTEM.LIBRARY as part of the
original Pascal software.

Setting the Prefix From Your Program

The format for the Set Prefix function call is
PREFIX SET := SET_?REFIX(NEW_PREFIX)

where NEW PREFIX is a parameter of type string that holds the new value
for the system prefix and where PREFIX SET is a user—defined boolean
variable. The calling program must ensure that the new prefix is a
valid SOS pathname. Any trailing delimiter (/) at the end of the
string is removed by the procedure. If for any reason the prefix
string is incorrect (is not a valid SOS pathname), the function returns
"False" and the prefix keeps its original value. If the syntax of the
string is correct, the function returns "True" and sets the system

Setting the Prefix From Your Program 25

#

Here are a couple of reminders about using the system prefix. First,
when your system is booted, the prefix automatically will be set to the
name of the Pascal system volume being used. That will remain the
prefix until you change it, using the Filer or using the new Set Prefix
procedure.

Remember also that even after you have set the prefix in order to

get to certain files, you can still get to any other file by
supplying its full pathname. 1In other words, your program does
not need to reset the prefix every time it refers to a file that
is unrelated to the curvent prefix. The full pathname can be
used instead.

To review the Pascal system prefix feature, see the Apple III Pascal
Introduction, Filer, and Editor manual, Chapter 3.

Getting the Value of the Current Prefix

The format for the Get Prefix procedure call is

GET_PREFIX(CURRENT_ PREFIX)

where CURRENT PREFIX is a VAR parameter of type string. The variable
passed to this procedure is set to the current value of the system
prefix. The prefix has a trailing delimiter (/).

Here is an example:

LOCAL _FILE := 'FOO.DATA';
GET_PREFIX(CURRENT PREFIX);
FNAME := CONCAT(CURRENT PREFIX, LOCAQ_FILE);

This example first uses the Get Prefix procedure within an executing
program to find out the value of the current system prefix, and
then--by means of the CONCAT function--constructs (in the third line) a
file name to be used by the program. The prefix is always returned in
SOS file name format.

Getting the Pathname of the Program
Currently Executing

|
i
|
|
|

The format for the Get Pathname procedure call is
GET_PATHNAME (PATHNAME)

where PATHNAME is a VAR parameter of type string. The variable passed
to this procedure is set to the pathname of the currently executing

27

28

4

Using the Executing Program Pathname

Pascal 1.1 provides a helpful extension to pathnames for use in
application program development. You may now use the percent character
(%) to mean '"the same directory path as the executing program.'" For
example, if the program

/PROFILE/APP1/SUB1/F00.CODE

is currently being executed, the 7% character stands for the directory
pathname

/PROFILE/APP1/SUB1

during the execution of this program and until another program is
executed.

Instead of giving, for example, the complete pathnames of data files
used by the program:

/PROFILE/APP1/SUB1/DATAl
/PROFILE/APP1/SUB1/DATA2

you can now simply call them by their local file names in your program:

%DATA1
%DATA2

This new pathname extension allows you to write an application program
without knowing the specific path to the location of the local files.
To use it, you first place the local files, such as the data files
above, in the same directory as the executing program, and then you use
the % character, whenever you need it, as a substitute for the
directory pathname. This capability frees you from having to know and
use the specific directory path of the program (and hence of its
library files) when you are creating the Library Name File. This
provides directory independence, so that you can move or copy an
application program from one directory to another-—from a flexible disk
to a rigid disk device, for example—--without changing the program.
Specifically, it allows a programmer to permit the end user to place

Using the Executing Program Pathname 29

¢

When you execute a program, the % character is set as soon as the
system has determined that the pathname of the program is valid and
that the local code file (for example, FOO.CODE) exists. The symbol is
not set to another pathname while the same program is executing, but
when you execute another application program or a system program, such
as the Filer, Editor, or Compiler, then the % is set to another
directory pathname, which is that of the new program.

Although you can use the % character any time as a directory path—-with
the List command in the Filer, for example--note that it has three
basic uses:

- naming files in a library name file;

- acceséing files during program execution;

- chaining to other programs during execution.

Using the Percent Character in a
Library Name File

Because the executing program pathname (%) is set as soon as the code
file for the program has been found, you can use it in the Library Name
File to replace the directory pathnames of the listed library files
(see Chapter 2). If you had this set of files:

/PROFILE {volume root directory name}
/APP1 {subdirectory name}
FOO.CODE {an executable program}
FOO.LIB {a Library Name File}
APP1.LIB {a library file}
APP2.LIB {a library file}

and wanted to use the new pathname symbol, the contents of the Library
Name File for FO0.CODE, which is FOO.LIB, would be

LIBRARY FILES:
%APP1.LIB
%APP2.LIB

$$

Then when you execute /PROFILE/APP1/FO0.CODE, the system opens up the
Library Name File FOO.LIB and reads the pathnames for the two library
files APP1.LIB and APP2.LIB. 1In this case the system expands the
pathnames like this:

%ZAPP1.LIB --> /PROFILE/APP1/APP1.LIB
%ZAPP2.LIB --> /PROFILE/APP1/APP2.LIB

The % stands for the directarv nath /PROARTTIR/APPl Af the nraarom

30 Using the Executing Program Pathname Chapter 4

¢

Keep in mind when developing an application that the grouping of
related programs and their libraries together in the same

directory allows you to use the % character to specify library
files.

Accessing Files During Program Execution

Most application programs require the use of numerous files (like data
files, output files, temporary files, and so forth) during execution.
These files usually reside in the same directory as the main program.
Using the % character, you can name these files in the main program
without having to know their directory paths when the program is
executing. For example, if the program

/PROFILE/APP1/GORN.CODE

uses the files DATAl and DATA2, you would want to group the set of
programs in the same directory:

/PROFILE {volume root directory name}
/APP1 {subdirectory name}
GORN.CODE {an executable program}
DATAL {a data file name}
DATA2 {a data file name}

Then in the source code for program GORN.CODE, you can specify the two
data files using these strings:

' ZDATAL'
'%DATA2'

Here are two examples of source code showing possible uses of the
strings now specified with the % character:

RESET(A_FILE, '%DATAl');
REWRITE(B_FILE, 'ZDATA2');

Thus you do not have to specify the actual directory path (in this
case, /PROFILE/APPl). Whoever uses this program—-you or someone
else~—~is free to place this set of files in any directory, with any
name, as long as they all reside in the same directory and as long as
that directory is on line at the time of program execution.

Chaining to Other Programs During Execution 31

¢

Chaining to Other Programs During Execution

When a set of programs is to be chained together during execution, you
can use the % character to specify the pathname of the next program to
be linked and executed. For example, if you want the set of programs

/PROFILE {volume root directory name}
/APP1 {subdirectory name}
FOO.CODE {an executable program}
BAZ .CODE {an executable program}
GORN.CODE {an executable program}

to be executed in the order of F00.CODE --> BAZ.CODE --> GORN.CODE, you
use these pathnames in the call to the SETCHAIN procedure:

-~ In FOO.CODE use the procedure call
SETCHAIN('ZBAZ');
- 1In BAZ.CODE use the procedure call
SETCHAIN('%GORN');
By using the % to specify the next file to be linked, you avoid having
to state the complete pathname. To start the execution of the chain,
you execute

/PROFILE/APP1/FO0

Again, all that is necessary is that you place the files on line and in
the same directory. -

For an explanation of the SETCHAIN procedure, see Appendix C in the
Apple III Pascal Programmer's Manual, Volume 2.

32

p—

33

T WO S |

34

5)

Arranging Files on Disk:
a Sample Application

The new features of Apple III Pascal discussed in the previous
chapters--such as extended libraries and several ways of manipulating
pathnames from within executing programs--were added specifically to
help you in the development of applications. Now, in this chapter, you
will see how to arrange your code and library files in directories on

a flexible disk when making a runtime version of a complex application.
Advanced programmers who understand the process of structuring an
application may skip this chapter and go to the next.

Preliminaries: a Significant Development Stage

Planning how to arrange your files on disk is a significant application
development stage, for the way you arrange your files will make a
difference in the executability of your application.

Important Decisions to Make

As you plan file layout for the runtime disk, you'll want to make the
following important decisions:

- Which library files will contain the intrinsic units required
by your application?

- Do you intend any library files to function as shared library
files in your application?

- In what directories and subdirectoriesbshould your code files
and library files be grouped?

- Do you want to make a turnkey application by including a
SYSTEM.STARTUP file?

(12797 cemi mmmd n damismmmab mamat Al T mbvmiintlaman £av A And inn

Preliminaries: a Significant Development Stage 35

®

- How many Library Name Files do you need to make, and which
library files will each one point to?

-~ Have you included any necessary chaining commands in your
programs?

- Do you need to make provision for any temporary files that the
application will require in the course of running?

Getting Started: Your New Application

In the following sections you'll go through the actual steps of
structuring the files of a particular application. Assume that you,
the application developer, have completed the coding, compiling, and
linking of the main programs and procedures making up this new
application. And you know what intrinsic units the application will
require at run time. Now, with the Pascal Filer and any other
necessary utility programs at your fingertips, you are ready to copy
all the relevant files to the disk or disks that will hold the runtime

version.

Your hypothetical application is a data base manager (named SUPER
MANAGER) with three parts, each developed as a main program:

- A top-level program that handles most of the user interface and
that dispatches to two other programs that do most of the work.

File name is DBM.CODE.

- A program that handles record definition and data entry.
File name is ENTRY.CODE.

- A program that handles sorting and report generation.

File name is REPORT.CODE.

Arranging the Intrinsic Units Your Application
Requires

In order for the system to find the intrinsic units that your
application programs require at run time, you need to identify them and
place them in library files, if you've not done so already.

Identify the Intrinsic Units Needed

Your programs use several intrinsic units, some originally resident in

36 Arranging Files on Disk: a Sample Application Chapter 5
t

identified here with an asterisk (*). Table 5-1 indicates which
program uses which intrinsic units.

Intrinsic Unit Description Used By
APPLESTUFF* Procedures and functions DBM.CODE

like RANDOM and KEYPRESS.

CHAINSTUFF* Three procedures to DBM.CODE
interrelate programs, ENTRY.CODE
like SETCHAIN. REPORT .CODE

SYSTEM.STAR.LIB

DBMUTILITY Your own set of utility ENTRY.CODE
procedures. REPORT.CODE

PASCALIO* Pascal input and output ENTRY.CODE
procedures, like SEEK. REPORT.CODE

SCREENMANAGER Your procedures to manage DBM.CODE
screen display. ENTRY.CODE

REPORT.CODE

SORTROUTINES Your own sorting routines REPORT.CODE

and utilities.

Table 5-1. Intrinsic Units Used by SUPER MANAGER

Make Library Files to Hold the Intrinsic Units

You need library files to hold these units, files with descriptive
names to help you identify the contents and to give the system access
to the intrinsic units at run time. Probably you'll defer the actual
making of these new library files until you're ready to move all the
required files onto the final runtime disk, but assume that, looking
ahead, you decide now to handle your library needs in the following
manner.

First, you copy the units you need from SYSTEM.LIBRARY to their own
files with, say, these names:

- APPLESTUFF unit moved to new file APPLE.LIB

— CHAINSTUFF unit moved to new file CHAIN.LIB; also to
SYSTEM.STAR.LIB

Arranging the Intrinsic Units Your Application Requires 37

i

Of course you could place these units together in one library file,
rather than three separate ones.

Note that because the new library file names clearly identify the
contents, you'll not lose track of where you've moved these units that
you copied from the original SYSTEM.LIBRARY. The CHAINSTUFF unit is
included because you have three main programs, as well as a
SYSTEM.STARTUP file, that will have to chain together during execution
of the application.

Second, if you haven't already collected your other intriunsic units
into distinct library files, you'll want to do it soon:

=~ DBMUTILITY procedures collected in new file DBMUTIL.LIB
—~ SCREENMANAGER procedures collected in new file SCRMAN.LIB
— SORTROUTINES procedures collected in new file SORT.LIB

Good. You've identified all the library files your application will
need. Shortly, you can place them in their proper directories on disk.

Preparing the Final Runtime Disk

Now you need to get a flexible disk ready to receive the code files and
library files of your application.

Format the Disk and Give the Root Directory a Name

Format a new blank disk--or reformat an old one--using the System
Utilities Format command. What do you want for the volume root
directory name? How about /SUPERMAN?

Select a Startup Option for Your Application

You are planning a turnkey application, one that does not require a
manual startup. If there were room for everything, you'd place the SOS
startup files, the Pascal system files, and your code files and library
files all on one disk so that the user would merely have to power up to
get the program running. But because your code files and library files
together use, say, about 209 blocks of disk space, you'll have to
provide the next best option, namely a disk that includes everything
except the SOS startup files. The user will then perform a two-stage
startup using your SUPER MANAGER disk after using a separate SOS
startup disk.

Now finish your disk premaratrian detasil he anmeeion o1. ..

38 Arranging Files on Disk: a Sample Application Chapter 5

¢

SYSTEM.PASCAL } to volume root directory /SUPERMAN
SYSTEM.MISCINFO }

But there are two more files to copy to your program system disk:

SYSTEM.STARTUP } to volume root directory /SUPERMAN
SYSTEM.STAR.LIB }

At execution time, SYSTEM.STARTUP, using CHAINSTUFF, which you had
placed in SYSTEM.STAR.LIB, will chain to DBM.CODE, the top-level
program, and hence start up the application, provided SOS is already
started up.

Copying Your Code Files and Library Files to
the Runtime Disk

Now you can move the code files and library files of your application
to the new disk, to give it the structure you want it to have in the
final runtime version. As part of that process, you'll make a Library
Name File to correspond to each main program code file. Because your
application will go out to the end user on a single flexible disk
(along with a SOS startup disk), all the files will reside in the same
directory, the volume root directory /SUPERMAN.

Copy Your Main Program Code Files

First, copy your main program code files to the new disk:

DBM.CODE }
ENTRY.CODE } to volume root directory /SUPERMAN
REPORT . CODE }

Copy Your Intrinsic Units Into Library Files

Next, transfer your intrinsic units to the same volume and place them
in the library files you planned above:

APPLE.LIB
CHAIN.LIB
PASCALIO.LIB
DBMUTIL.LIB
SCRMAN.LIB
SORT.LIB

to volume root directory /SUPERMAN

[N N VP S i S

Make the Necessary Library Name Files

Now make three Library Name Files to correspond in name to the three
main nraocrame enhetitntinoe the eanffiv . TTR far _CODF. Tn earh Tihrarv

Copying Your Code Files and Library Files to the Runtime Disk 39

by the program associated with that particular Library Name File, both
the library files that only this program uses and those it shares with
one or both of the other programs. This is how your Library Name Files
will look:

DBM.LIB « « « « « « { LIBRARY FILES:
%APPLE.LIB
%SCRMAN.LIB
%CHAIN.LIB
$$ }

ENTRY.LIB « { LIBRARY FILES:
%SCRMAN.LIB
ZPASCALIO.LIB
%DBMUTIL.LIB
%CHAIN.LIB
$$ }

REPORT.LIB . . . « { LIBRARY FILES:
%ZSCRMAN.LIB
%“PASCALIO.LIB
%#DBMUTIL.LIB
%#SORT.LIB
%CHAIN.LIB
$$ }

If you haven't done so already, place these Library Name Files on the
new disk.

Check Your New Disk Directory

Now the directory of the new disk should include these files, which are
necessary to start up and run your application when SOS is started up.

/SUPERMAN
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.STARTUP
SYSTEM.STAR.LIB
DBM.CODE
DBM.LIB
ENTRY.CODE
ENTRY.LIB
REPORT .CODE
REPORT.LIB
APPLE.LIB
CHAIN.LIB
PASCALIO.LIB

40 Arranging Files on Disk: a Sample Application Chapter 5

¢

Note that the following sequence of actions is necessary to execute the
application. First the user starts up SO0S. Then when SOS asks for the
system disk containing SYSTEM.PASCAL, the user will insert the SUPER
MANAGER disk in the system drive. At this point the application will
start running.

Some Final Details to Consider

Before you run your application on the new disk to see how it performs,
you need to give attention to a few minor but important matters. They
have to do with chaining programs, opening temporary files, and running
the application on large disk.

Chaining Programs

You designed SUPER MANAGER in such a way that your turnkey program,
SYSTEM.STARTUP, interacts with DBM.CODE, DBM.CODE interacts with the
other two main programs, ENTRY.CODE and REPORT.CODE, and they in turn
interact with DBM.CODE. This is accomplished through chaining, where
each of the four programs (including SYSTEM.STARTUP) declares "USES
CHAINSTUFF" and where you place chaining statements in each program in
the appropriate places. As we indicated in Chapter 4, you can use the
% character to specify in a statement the directory pathname of the
next program to be chained.

Thus, in DBM.CODE, you'll use the commands

SETCHAIN ('ZENTRY.CODE')
SETCHAIN ('ZREPQRT.CODE')

and in the programs ENTRY.CODE and REPORT.CODE, you'll use
SETCHAIN ('%DBM.CODE')

at the points where your application needs to go from one program to
another. (Actually, you don't need to use the .CODE suffix in these
commands.) Thus, when the program is executed, SYSTEM.STARTUP will
chain to /SUPERMAN/DBM.CODE, and DBM.CODE and the other two programs
will chain in turn as instructed.

This is a good time in the file structuring process to check to see
that your program declarations and program code include the proper
chaining instructions. :

Some Final Details to Consider 41

¢

Opening Temporary Files

While executing, the program REPORT.CODE does some file sorting, which
requires the creation of temporary files. The program can take care of
creating those files as needed, but only if you make sure it includes a
code line of the form

REWRITE (F, '%SORT1')

each time it needs to open or reopen a temporary sort file, where F is
the identifier of a file variable (already declared) and the string
value is the pathname of the file to be opened by the built-in
procedure REWRITE. By using the % character in the string, you tell
the system to supply the directory pathname used by the executing
program. (See Chapter 4 if you want to review the use of this special
extension. Use of the REWRITE procedure is explained in the Apple III
Pascal Programmer's Manual, Volume 1.)

Running Your Application on a Rigid Disk Device

You can anticipate that some of the end users of your data base will
want to run SUPER MANAGER on a rigid disk device like ProFile. 1In that
case, you will want to include special instructions, perhaps near the
beginning of your manual, for transferring the files to the rigid disk.
You will direct the user to copy all the codefiles and library files
from the application flexible disk~-except the files SYSTEM.STARTUP and
SYSTEM.STAR.LIB, which won't be needed--to a new subdirectory (called
/SUPERMAN or whatever you like) on the rigid disk.

To execute the application, provided you have already started up SOS
and powered up a ProFile disk drive, you will type X and the pathname

/PROFILE/SUPERMAN/DBM.CODE

Now SUPER MANAGER should run either on flexible disk or on rigid disk,
ready for a final testing phase before production and release.

The chapters following this one tell you of many other ways that Pascal
l.1 will facilitate the development of applications, such as generating
a program listing by request at compile time.

42

43

44

6

Using the ASCII/Binary Floating-Point
Conversions

Two new conversion routines are available to you with Pascal 1l.1l. One
converts an ASCII string of digits and an integer to the Pascal real
number (binary floating-point) format. The second converts a Pascal
real number (binary floating-point) to an ASCII string of digits and an
integer. These new routines will allow you to build your own input and
output routines instead of using Read and Write commands. The meaning
of the ASCII string and the integer are indicated in the following
examples:

l. An ASCII string, say, of 3452779 and an integer of =4 are
interpreted as 3452779 * 19°-4 = 345,2779.

2. An ASCII string, say, of —-22491 and an integer of 3 are
interpreted as -22491 * 19~3 = -22491000.

These routines typically will be useful when you need to edit and
convert a keyboard input to a Pascal real (binary floating-point) or,
on the other hand, to write out a Pascal real (binary floating-point)
as a text string. To do these, you may, of course, use the previously
available text I/0 procedures READLN and WRITELN. However, the latter
are limited in the way they handle numerical conversions. If your
design requires more control over such conversions, you can use the two
new conversion routines. No USES statement is required in order to use
these new routines. However, the PASCALIO unit must be available at
runtime in an appropriate library file.

The ASCII to Binary Floating-Point
Conversion

A new function in the PASCALIO library unit, STRTONUM, is defined as
FUNCTION STRTONUM (VAR DECSTR : STRING; POWEROFTEN : INTEGER) : REAL;

where DECSTR is any string of ASCII characters and POWEROFTEN an
integer (a power of ten) to be converted together to a real number.
STRTONUM returns the correctly rounded real. If the first character is

a cieon (4 Av) i+ 30 MandTAAd Arnsvw~~s T .. Aslmmcat o n S SO

The ASCII to Binary Floating-Point Conversion 45

the Power of Ten parameter (POWEROFTEN) to indicate where the decimal
point should be in the converted number. For example:

If S := '12345';
then STRTONUM (S, -3) gives the real value 12.345
and STRTONUM (S, 2) gives the real value 1234509

The length of the string must be less than 29, and blanks are treated
as zeros. 1If the length of the string is greater than 28, then
STRTONUM generates a NaN as the result. Otherwise, POWEROFTEN can be
any integer and is used to scale the value returned.

The Binary Floating-Point to ASCII Conversion

A new procedure in the PASCALIO library unit, NUMTOSTR, is defined as

PROCEDURE NUMTOSTR (R : REAL; FIXED : BOOLEAN; PULACECOUNT :
INTEGER; VAR S : STRING; VAR EXPON : INTEGER);

where R is a real number to be converted to a string of ASCIL
characters and an integer, where FIXED specifies a fixed-point or a
floating-point output format, and where PLACECOUNT gives either the
total number of digits (in floating-point format) or the number of
places to the right of the (assumed) decimal point (in fixed point
format).

Note that the digit string never contains a decimal point or a leading
zero; final output format must be constructed from S and EXPON. For
example:

NUMTOSTR (p.99P1234, FALSE, 4, S, EXPON)

will set S to '1234' and EXPON to -7. You can now use these values to
format the number for output as you wish.

If S is too short to hold the output string, a string assignment error
will occur. Other errors--like attempting to format an infinity or
NaN, or specifying PLACECOUNT <1 when FIXED is FALSE, or specifying
PLACECOUNT < when FIXED is TRUE--will return S = '#***' with EXPON
unchanged.

If you are not familiar with the Pascal type REAL and the way
the Pascal compiler handles it, please consult Chapter 3 in the

Apple 111 Pascal Programmer's Manual, Volume l. For more
information on the single-precision floating-point numerics
standard followed here, see Appendix E in Volume 2 of the
same manual.

46

P -
i

: i

! H

Bihad e OB N *

¥ 2

§ :

SR S—

: 3

i :

i i

 —— oA—

; £
:

1 .

SRR J—

S AT A

T g

. S

T RS S—————— -

47

48

/

Listing a Program at Compile Time

The Pascal Compiler now gives you two ways to generate a program
listing: you may use the LIST option previously available or you may
use the Listing File option at the time you compile your program. For
more information on the LIST option, see Appendix F in the Apple III
Pascal Programmer's Manual, Volume 2.

The second option allows you to request a program listing immediately
before your source program is compiled. As soon as your program calls
the Compiler, you are asked for the source file name, the code file
name, and the file name where you want the listing to be placed. Here
is the request line the Compiler presents to you:

Listing file (<ret> for none or option in source):
Now you are given three options:

= Press RETURN. If your program already contains a LIST option
that requests a listing and specifies a listing file, then the
listing will be made. Any L+ or L- option will be carried out.
If there is no LIST request in the source program, then no
program listing at all will be made.

- Type a pathname. This action causes the listing to go to the
file you name here, overriding any LIST option given in the
source. L+ and L- are still usable.

- Press ESCAPE, then RETURN. This action cancels compiling and
returns you to the command level.

Thus you may choose the LIST option at the time you write the source
code, and in addition you may either confirm that option at the time
you compile or use the Listing File option to make a new listing
request.

Son s
: H
RTINS, SRPAR—— R — AR NOREP——" o e - FERRNPRS SR
H H : }
{ : §
] £ ;
i H ‘ § i
i H ¢ : :
H H i H : ¥ :
i £ H i % g i
H H & & H £
S ik " NP RN TR S —— - Sp——
3 : : i 4

H g : 3

H £ &

f : i H H ¢

i i : : :
U —— e i —
¥ F H H
3 H 1 H i H
H :] H ¢

p F: i
i : : ; :
; i i i :
§ : Ed H ¢
e : - . .
i Z ¢
i . i §
H H 1
i : . N — .
x ¢ g =
H 4 3
s :] 4

49

50

8
Making a Rigid Disk Your System Disk

Your system will run faster if you transfer your Pascal system files to
a rigid-disk device, such as the Apple ProFile. Pascal 1.1 has a
program that allows you to move the Pascal system to any blocked
device, including a rigid disk. This program—-called PMOVE--takes a
first-stage Pascal startup disk and changes SOS.INTERP so that the
device you specify will become the Pascal system device, identified by
the system as unit #4. As a result, the files SYSTEM.PASCAL,
SYSTEM.MISCINFO, and SYSTEM.LIBRARY can now operate from a rigid disk
instead of from the built-in drive of the Apple III. The remaining
Pascal files, such as SYSTEM.COMPILER and SYSTEM.EDITOR, can optionally
be placed on the rigid disk for faster execution.

Using PMOVE

Before beginning the PMOVE procedure, check the following:

1. Make sure that your rigid system disk is connected to your
Apple III and powered up.

2. Using your System Utilities program, check the SOS.DRIVER file
on your current boot disk to be sure it contains an active
driver for the rigid-disk device you want to be the new Pascal
system device.

Note: If you are going to be moving the Pascal system files to
a ProFile, you can use the ProFile driver already included in
the SOS.DRIVER file on your new PASCAL3 disk.

Once you have made these preparations, you are ready to begin the PMOVE
procedure. Follow these steps:

l. Place your PASCALl Version 1.1 disk in the built-in drive and
start up the system by turning on the power switch or pressing
CONTROL-RESET.

Using PMOVE 51

2.

Arrange the SOS files and the Pascal system files as follows:

Onto a new Pascal startup flexible disk, formatted for Apple III

Copy SOS.KERNEL from your PASCAL1 disk (Version 1.1)
Copy SOS.INTERP from your PASCAL1 disk (Version 1.1)
Copy SOS.DRIVER from your PASCAL3 disk (Version 1.1)

Note: Actually, you may copy your most recently configured
SOS.DRIVER file, as long as you make sure it contains a driver
for your rigid system disk.

Onto your rigid system disk (at volume root directory level)

Copy SYSTEM.PASCAL from your PASCAL1l disk (Version 1.1)
Copy SYSTEM.MISCINFO from your PASCAL1l disk (Version 1l.1)
Copy SYSTEM.LIBRARY from your PASCAL3 disk (Version 1l.1)

Note: You should copy the expanded version of
SYSTEM.LIBRARY found on the PASCAL3 disk, not the one on
the PASCAL1 disk. You may optionally copy any of the

remaining Pascal files from your new Pascal 1.1 disks to
your rigid system disk.

Place your PASCAL3 Version 1.1 disk in an external flexible
disk drive. (PMOVE is on PASCAL3.)

At the Command line, type X for execute, and then type PMOVE.

When the program PMOVE asks for the SOS device name of the new
system device, enter the name of your rigid system disk in SOS
format (.PROFILE, for example).

When the program PMOVE tells you to insert the disk containing
SOS.INTERP and enter the SOS device name of the drive, insert
the new Pascal startup disk (the one you made in step 3 above)
into a drive and type in the name of the drive in SOS format
(.D2, for example).

Note: If you have no free drives, you may remove your PASCAL3
disk and place your new startup disk in the now empty drive.

When the program terminates successfully, restart the system
using the new startup disk. You can remove the startup disk
after this. The Pascal system should now be running on the
rigid disk. You will know that your system is working
correctly if the Apple III Pascal prompt line comes up on the
screen. If it doesn't annear. rcherk the ahnve ctoenc in Arder

‘52 Making a Rigid Disk Your System Disk Chapter 8

Comparing Versions of SYSTEM.LIBRARY and
SOS.DRIVER Files

For your convenience, here are the contents of the two different
SYSTEM.LIBRARY files and the two different SOS.DRIVER files:

SYSTEM.LIBRARY on PASCAL3 contains SYSTEM.LIBRARY on PASCAL]l contains

APPLESTUFF APPLESTUFF
CHAINUNIT CHAINUNIT
LONGINTIO LONGINTIO
PASCALIO PASCALIO
PGRAF -
TURTLEGRAPHICS
REALMODES
TRANSCEND
SANE
ELEMS
SOS.DRIVER on PASCAL3 contains SOS.DRIVER on PASCAL1 contains
«GRAFIX «GRAFIX
.SILENTYPE .SILENTYPE
.AUDIO .AUDIO
.PRINTER «PRINTER
. CONSOLE ; .CONSOLE
.PROFILE {configured for slot #4}
+.FMTD1

+.FMTD2 {disk format drivers to be used with the}
+.,FTMD3 {Utility Filer, which may be placed on }
+,FTMD4 {the ProFile rigid disk. }

i
¢
E ST A————
i
SR ST .
i H i
-~ & . .
i H H
I ‘ !
It e e s 5 R S
8 i :
3 3 :
H H
: i
P ?
EDCANSMNE JONIRPUSN SO, SR
§ H
i i
{ ‘
i 3 “

53

54

9

Other Features of Pascal 1.1

In addition to the features described in the previous chapters, Pascal
1.1 contains the improvements below.

A Change to the Editor

Under the new version of Pascal, the Editor will correctly read a file
with control characters in it. These characters will be displayed on
the console in the current system font, which has a mnemonic symbol for
each control character. Thus you can edit a file that has control
characters.

The Screen Display in Program Chaining

Version 1.1 of Pascal changes the way the system handles the console
display when one program chains to another. In the 1.§ version, the
system reset the console to its default values at the completion of a
program. Now when a program chains to another program, the console
display is not reset by the system; the display remains in the same
state after it completes a program. This allows you to chain programs
that rely on the same display format and content, and it provides
compatibility with Apple II Pascal.

AIIFORMAT Has a New Look

The AIIFORMAT program on your PASCAL3 disk enables you to format disks
that will run on an Apple II using Apple 11 Pascal or on an Apple III
using Apple III Pascal. This improved version of AIIFORMAT has a
better interface, giving you step—-by-step instructions for a quick,
effective format. Simply go to the Command level (first making sure
that PASCAL3 is in a disk drive) and execute /PASCAL3/AIIFORMAT,
letting the program take you through the format procedure.

A New System Level Command 55
¢

A New System Level Command

A new command option has been added at the system Command level. This
command allows you to exit the Pascal system and then start up another
application, such as Visicalc III or Applewriter ITII. The new command
is Q(uit. When you type Q at the Command level, the system will ask
you whether or not you wish to leave the Pascal system. Type Y to exit
the system.

A Modification of the Compiler

The compiler and linker have been modified to support up to 254
procedures in a single compiled unit. Previously, you could have only
143 procedures in your source file. Also, the compiler now accepts
larger procedures by increasing the allowable size of the code
generated for a procedure.

